adaptable

lunes, 7 de mayo de 2018

El relé


Se caracterizan por conectar y realizar funciones principalmente de mando con un coste energético relativamente bajo, siendo utilizados principalmente para el procesamiento de señales. Aunque existen numerosos tipos y diferentes construcciones, el principio de funcionamiento para todos ellos es similar

Un relé está formado por una bobina con un núcleo de hierro y uno o más contactos, los cuales conmutarán su posición ante la aparición de un campo magnético creado por la propia bobina.
En posición de reposo (sin alimentación eléctrica a la bobina), un resorte empuja una lámina de material conductor basculante, la cual se encuentra separada del núcleo. En estos momentos existe una conexión entre las bornas “común” y “NC” (normalmente cerrado).

Cuando se active el pulsador, el circuito quedará cerrado, existiendo una alimentación eléctrica a la bobina, la cual crea un campo magnético capaz de atraer a la lámina basculante venciendo la fuerza realizada por el resorte en oposición

Es entonces cuando se produce la conmutación de los contactos, existiendo comunicación entre las bornas “común” y “NA” (normalmente abierto). Si en un determinado momento se produce el corte de alimentación a la bobina, esta dejará de producir flujo electromagnético y el relé retornará a su posición inicial, debido a la fuerza de recuperación que realizará el resorte. Es precisamente por este efecto por el que los relés de este tipo son considerados monoestables (solo tienen una posición estable), debiéndose tener este aspecto en cuenta para la realización de los circuitos.


APLICACIONES DE UN RELÉ

  Inversión de contactos: de esta manera eliminamos una limitación muy frecuente de algunos sensores que se utilizan como dispositivo de entrada, ya que con la utilización del relé no importa si el contacto del sensor es abierto o cerrado, pues lo transformamos en el que más nos interese.
  Multiplicación de contactos: el relé permite multiplicar los contactos de salida de un sensor con la simple conexión de este a una bobina de un relé, en el cual tendremos varios de estos contactos. Al activar el sensor, excita la bobina y mueve los contactos, que utilizaremos a nuestro antojo.
  Amplificación de potencia: en determinadas ocasiones, es posible que los sensores colocados en la instalación no permitan el paso de la intensidad deseada. Una rápida solución la encontramos en la utilización de relés, en lo que podría denominarse un mando indirecto.
  Cambio de tensión: los relés permiten que la tensión de entrada a la bobina, por ejemplo, sea en continua, y la aplicada en los contactos en alterna y viceversa. De esta manera podemos utilizar señales en continua para mover aparatos en alterna y viceversa.
   memoria: en los circuitos automáticos, todas las discriminaciones (acciones desarrolladas para eliminar la doble señal eléctrica) se realizan por medio de relés, denominados memorias. Esta aplicación se llama realimentación.

* TIPOS DE RELÉS

RELÉS ENCHUFABLES

constan de dos partes:
 Cabeza del relé: es el elemento que contiene todos los mecanismos  (contactos, bobina...).
 Zócalo o base enchufable: contiene una serie de clavijas en donde encajan las propias de la cabeza; estas clavijas están conectadas a unos bornes para facilitar la conexión a los conductores. Si por cualquier motivo se deteriora el mecanismo, se puede sustituir, puesto que encajaría perfectamente en esta base.


- PARA CIRCUITO IMPRESO


Estos elementos se usan en electrónica y a diferencia de los anteriores, carecen
de base, de modo que únicamente llevan unas patillas que se sueldan al circuito.




- DE ENCLAVAMIENTO  se caracteriza por no ser monoestable  ya que es biestable— y por actuar por impulso eléctrico es decir, pulsas el pulsador y se conecta, lo vuelves a pulsar y se desconecta




- DE CONTINUA: pensados para corrientes continuas, por lo que la bobina está pensada para las características de este tipo de corriente






miércoles, 4 de abril de 2018

Starlink, la red de 4.425 satélites de banda ancha de Elon Musk, es aprobada y deberá estar operativa antes de 2024




La Comisión Federal de Comunicaciones de Estados Unidos (FCC) ha dado luz verde a Elon Musk para el despliegue de su ambiciosa y enorme red global de internet satelital, conocida como Starlink. Se trata de un proyecto de SpaceX con el que buscan poner en órbita 4.425 satélites que proporcionarían internet de banda ancha a todo el mundo.
Después de tres años de planificación, una jugosa inversión por parte de Google y ciertas dudas, Elon Musk presentó en noviembre de 2016 una carta a la FCC donde solicitaba autorización para echar a andar este gran proyecto que sería único en su tipo. Pues dicha autorización finalmente llegó, y Musk debe empezar a trabajar cuanto antes, ya que la FCC le puso fecha límite.

Después de que la FCC revisara y aprobara la solicitud de Musk, la comisión le ha otorgado una licencia de constelación a SpaceX con la que se le autoriza poner en órbita 4.425 satélites, con lo que se proporcionará internet a velocidad gigabit con una latencia máxima de 25 ms.
La idea de Musk es en realidad tener 12.000 satélites, pero debido a las restricciones por parte de la FCC, ya que no todos estarían en la misma órbita y frecuencia, sólo pudo solicitar permiso para 4.425. Es decir, éstos más de cuatro mil satélites estarán conectados en red, con la misma frecuencia y a la misma altitud.


La FCC también le exige a Musk que al menos el 50% de la red debe estar en la órbita asignada y operando antes del 29 de marzo de 2024. Si pasa esta fecha y Musk no cumple, la licencia le será retirada y deberá solicitar un nuevo permiso. Es decir, tiene seis años para ponerse las pilas.
Como sabemos, hace unos días SpaceX envió los primeros dos satélites de la red Starlink, los cuales están actualmente en órbita con el objetivo de realizar pruebas. La finalidad de esta red de banda ancha sería, según Musk, proporcionar conexión a internet de banda ancha a todo el mundo y a precios asequibles, donde lo importante es que se busca conectar aquellas zonas rurales y de difícil acceso, donde hoy día es extremadamente costoso colocar infraestructura.
En esta autorización, la FCC también solicitó a SpaceX un plan detallado de mitigación de escombros espaciales, por lo que empresa de Musk deberá entregar en los próximos años, los detalles y diseño de cada satélite y qué pasará con ellos una vez que terminen su vida operativa. El objetivo de esto es evitar más basura espacial.


Todo puede sonar muy bien, pero la realidad es que sigue habiendo dudas y protestas por parte de otros operadores de internet satelital. Por ejemplo, OneWeb externó su preocupación ante Starlink debido a la gran cantidad de satélites que piensan desplegar, ya que temen que esto podría ocasionar una saturación del espectro y sobre todo la órbita, ya que todos operarán en la misma zona.
Hasta el momento no ha habido reacciones por parte de SpaceX o Elon Musk, así que tendremos que estar pendientes para dar seguimiento a este proyecto y cuál sería el plan para echar a andar Starlink.
En Genbeta | Así funcionará la red de internet mundial de más de 4.000 satélites que Elon Musk comienza a construir este sábado
En Xataka | Elon Musk iniciará las pruebas de su gran red global de internet con dos satélites que se pondrán en órbita este 17 de febrero



miércoles, 28 de febrero de 2018

Mobile World Congress 2018 tendencias





Las redes 5G ya son una realidad

Tras años en pruebas de laboratorio ya se aprecian casos concretos (y reales) para el despliegue de esta nueva tecnología, cuya subasta comenzará en breve en España. Las operadoras desvelan sus planes para el 5G, la red de comunicaciones que deberá soportar el inmenso tráfico de un mundo en el que todo habla con todo, muestran sus proyectos piloto o afirman, como en el caso de Telefónica, estar ya preparadas para lo que está por llegar. Los antiguos enemigos también se unen, como ha hecho Telefónica con Facebook y Google, para ofrecer servicios comunes y sacar ventaja del mundo hiperconectado que viene, en el que habrá lugar, y ganancias, para todos.


Así, podremos dirigirnos al asistente virtual Aura, tanto con comandos directos de voz como a través del Messenger de Facebook, del Cortana de Microsoft o de Google Assistant. El usuario, convertido en el centro del universo digital, será siempre el que elija... Por supuesto, también podremos elegir a través de qué dispositivos queremos comunicarnos con nuestro hogar o nuestros contactos, y desde dónde. A nuestra lavadora (es un decir) le dará igual si le estamos hablando desde el coche, desde el móvil, a través del televisor o de un altavoz inteligente. Y se pondrá en marcha cuando le digamos.

Parece que, por fin, ha llegado el momento de que se materialicen los cambios que llevan ya años anunciándose a bombo y platillo. Si hay algo que esta edición del MWC ha dejado claro es precisamente eso. Que se acabó la espera, que la nueva revolución tecnológica esta en marcha y que podemos empezar a disfrutar de ella desde ya. Para alguien no experto podría resultar complicado darse cuenta de cómo todas las piezas encajan, cómo los desarrollos en diferentes campos se van complementando unos a otros y , al hacerlo, van tejiendo una nueva realidad de la que muy pronto todos formaremos parte.

El retorno del rey móvil

Al mismo tiempo que las comunicaciones, las redes y la inteligencia artificial mejoran, los dispositivos que usaremos en este nuevo mundo hiperconectado hacen lo propio. Y un móvil deja de ser sólo un móvil para convertirse, es cierto, en un «mando universal» que controla todos nuestros dispositivos domésticos, pero también en una extensión de nuestros propios sentidos que nos ofrece información valiosa, y en tiempo real, sobre todo lo que nos rodea. Así lo ha entendido, por ejemplo, Samsung, que ha convertido la cámara de su nuevo Galaxy S9 en una herramienta capaz de llegar hasta donde los sentidos naturales no pueden. La firma surcoreana ha entrado por la puerta grande en su regreso a la feria para desvelar su dispositivo estrella.

Cámaras duales y pantallas sin bordes

He aquí algunos ejemplos. Si enfocamos la cámara al cielo, aparecerá la información del tiempo; si captamos con ella un alimento, nos dirá cuantas calorías estamos a punto de ingerir; si miramos a través de ella a un cartel escrito en lengua extraña, el texto aparecerá en nuestro idioma; si encuadramos un monumento, nos dirá cómo se llama y nos contará su historia; y si enfocamos un objeto cualquiera que nos gustaría tener, nos dirá su precio y donde encontrarlo.
Sony, por su parte, sorprende a propios y extraños con las extraordinarias capacidades fotográficas de su nuevo Xperia XZ2, mientras que Nokia sigue llamando a la nostalgia y ZTE luce su nuevo Axon 9 y, cómo no, también su reciente Axon M, un extraño móvil con dos pantallas. Lo que ha dejado claro la feria es que después de un primer año (2017) en el que han llegado los primeros móviles con pantalla casi sin bordes, este año no solo se consolida, sino que también toca a otros rangos de precios, como ha exhibido Alcatel.

Los coches traccionan hacia la tecnología

En cuanto a conectividad se refiere, también los coches van ganando terreno. Ahí está Seat, por ejemplo, que ha sido la primera firma capaz de integrar Shazam a su sistema de «infotaiment» de forma que si al escuchar una canción tocamos un botón en pantalla, sabremos el título, quien la canta y podremos agregarla a una lista. La marca trabaja también en un sistema de Inteligencia Artificial que nos permitirá comunicarnos con nuestro coche exactamente igual a cómo lo hacemos ya con otros dispositivos. Los fabricantes de automóviles cargan cada vez más de sistemas inteligentes y tecnología en sus modelos, mientras los desarrollos sobre el coche del futuro y autoconducido se van acelerando con firmas como Tesla o Google como punta de lanza de esta innovación que tiene por ahora más futuro que presente.

Inteligencia Artificial para todo

La inteligencia artificial extiende sus tentáculos a todas las áreas y empieza a llegar a los móviles. Para hacerlos, si cabe, más «listos». Los nuevos procesadores, muchos de ellos capaces de computar a base de redes neuronales, aportan ahora inteligencia extra a cada dispositivo. O mejor dicho, la capacidad para que cada dispositivo sea inteligente. La forma en que se aplique esa capacidad depende de lo que quiera desarrollar cada una de las marcas. Algunas, como hemos visto, optan por las capacidades fotográficas de sus terminales, otras apuestan por el rendimiento, o por fortalecer determinadas prestaciones. Es lo que se ha dado en llamar la «barra libre» de la inteligencia artificial.
Fuente: http://www.abc.es/tecnologia/redes/abci-tendencias-arroja-mobile-world-congress-201802280114_noticia.html#

RESISTENCIAS LDR



Sus siglas vienen de light dependent resistor, resistor dependiente de la luz, también llamado fotorresistencia. Se fabrican a base de sulfuro de cadmio. Este material, convenientemente tratado, contiene pocos o ningún electrón libre si se mantiene en completa oscuridad. En estas condiciones su resistencia es elevada. Si absorbe luz se libera cierto número de electrones y esto hace aumentar la conductividad del material. Al cesar la iluminación, los electrones son recapturados a sus posiciones originales. Se recomienda su no utilización por ser materiales altamente contaminantes. Tienen varios megaohmios de resistencia, pero esta baja a unos 100 ohmios al ser expuesta a la luz

Simbologia resistencia LDR

Aplicaciones de las resistencias LDR
Se emplean en iluminación, apagado y encendido de alumbrado (interruptores crepusculares) farolas y focos, en alarmas, en cámaras fotográficas, en medidores de luz. Las de la gama infrarroja en control de máquinas y procesos que contabilizan objetos. Y antiguamente en televisores monocromos o de blanco y negro lo utilizaban para compensar el brillo de la pantalla según estuviera la iluminación de la estancia. Hoy en dia se suele utilizar mas los diodos emisores de infrarrojos y los fototransistores que suelen tener mejor rendimiento en la mayoria de las aplicaciones..

. MÁQUINAS DE CORRIENTE CONTINUA


 La máquina de corriente continua es una de las más versátiles en la industria. Su fácil control de posición, par y velocidad la han convertido en una de las mejores selecciones en aplicaciones de control y automatización de procesos. Con el avance de la electrónica han caído en desuso, ya que los motores de corriente alterna del tipo asíncrono pueden ser controlados de igual forma a precios más asequibles para el consumidor de la industria. A pesar de esto, actualmente las máquinas de corriente continua siguen empleándose en aplicaciones de laminadoras, trenes o tranvías. Los motores y los generadores de corriente continua están constituidos esencialmente por los mismos componentes, diferenciándose en la forma de utilización; por eso en esta unidad los trataremos por igual. Si se hace girar al rotor de la máquina, se produce en el bobinado inducido una fuerza electromotriz capaz de transformarse en energía en el circuito de carga. En este caso la máquina funciona como generador, transformando la energía mecánica en eléctrica. En cambio, si se aplica una tensión continua al devanado inducido de la máquina a través del colector de delgas, el comportamiento de esta ahora es como motor, transformando la energía eléctrica en mecánica. En ambos casos el inducido está sometido a la acción del campo inductor principal. La importancia de este tipo de motores radica en su suavidad de movimientos y su precisión; en la actualidad esto se consigue también para motores de corriente alterna incorporando un variador de frecuencia que aproxima bastante el funcionamiento de estos al de los motores de corriente continua. 

 PARTES FUNDAMENTALES DE UNA MÁQUINA DE CORRIENTE CONTINUA

 Hay que distinguir dos tipos de bobinados en las máquinas de corriente continua;
-  bobinado inductor . El bobinado inductor se instala siempre en el estátor de la máquina, es decir, la parte fija. Este bobinado es el encargado de generar el campo magnético principal que circulará por la máquina. 
- bobinado inducido: El bobinado inducido se instala en el rotor de la máquina, es decir, en la parte móvil. En él se induce el flujo magnético provocado por el corte de las líneas de campo magnético al entrar en movimiento la máquina 

. ENTREHIERRO:
 El entrehierro es la parte de la máquina que separa el estátor del rotor, es decir, es el trozo de aire existente entre la parte fija de la máquina y la parte móvil. Este espacio es imprescindible para el funcionamiento de la máquina y para no provocar problemas mecánicos por roces entre rotor y estátor. Sin embargo, este espacio es un inconveniente para los campos magnéticos, puesto que se debilitan fuertemente cuando pasan de un medio como puede ser el circuito magnético de las chapas del estátor, a otro medio como es el aire. Por ello el entrehierro de una máquina debe reducirse al mínimo posible para evitar pérdidas en el circuito magnético. 

ESCOBILLAS
Las escobillas deben poner en cortocircuito todas las bobinas situadas en la zona neutra. Si la máquina tiene dos polos, tenemos también dos zonas neutras. En consecuencia, el número total de escobillas ha de ser igual al número de polos de la máquina. En cuanto a su posición, será coincidente con las líneas neutras de los polos. Las escobillas estarán sujetas mecánicamente con un soporte que, en su interior, alojará un muelle de forma que ejerza permanentemente una fuerza sobre la escobilla y el colector de delgas. De esta manera se asegura el contacto de forma permanente, incluso cuando el desgaste de las escobillas sea progresivo.

 ROTOR:
 Es la parte móvil de la máquina y en él se alojan las bobinas correspondientes al inducido. Suelen construirse de chapas magnéticas para evitar en la medida de lo posible las pérdidas de potencia por corrientes de Foucault. 


lunes, 5 de febrero de 2018

EFECTO JOULE



EFECTO JOULE Se entiende con este nombre el calentamiento experimentado por un conductor al ser atravesado por la corriente eléctrica. Este calentamiento se debe al roce de los electrones con los átomos a su paso por el conductor. 

Las unidades caloríficas usadas son: la caloría (cal) y la kilocaloría (kcal). 


  • Caloría. Es la cantidad de calor necesaria para elevar la temperatura de un gramo de agua un grado centígrado. 
  • Kilocaloría. Es la cantidad de calor necesaria para elevar la temperatura de un kilogramo de agua un grado centígrado. 1 kcal = 1000 cal 20 


Existe una equivalencia entre la unidad de energía eléctrica (Julio) y la unidad calorífica (caloría): 1 Julio = 0,24 calorías. 

La energía calorífica y la energía eléctrica vienen relacionadas por la fórmula siguiente, conocida como ley de Joule: 

Q = 0,24 · E (en calorías) Q = Cantidad de calor (cal) E = Energía eléctrica (W·s) 0,24 = Coeficiente de equivalencia 

El efecto Joule  es algo muy deseado y esencial para muchos productos actuales. Productos como las estufas, los calefactores, los termos, los secadores o incluso las vitrocerámicas. Y es que este efecto permite convertir la energía eléctrica en calor, algo que ha sido muy explotado por ingenieros durante el último siglo para la creación de un sinfín de productos.                                                                                 En el caso de los secadores, por ejemplo, encontramos una serie de resistencias que se calientan con el paso de la corriente eléctrica, calentando así el aire que expulsa al exterior. El juego está en tratar de obtener la mayor eficiencia energética (con la menor cantidad de electricidad posible, calentar el aire a una misma temperatura).
En otros ámbitos también es algo no deseado pues impide la obtención de la máxima cantidad de energía de una corriente eléctrica y aporta calor en situaciones en las que no lo deseamos por ejemplo en una fuente de alimentación  de un ordenador o cualquier otro dispositivo en el que el calor es algo que debemos controlar.

Tipos y niveles de mantenimiento industrial




En primer lugar definimos mantenimiento en el ámbito de la empresa o la industria como el conjunto de acciones técnicas o administrativas necesarias para controlar, restituir y mejorar los activos físicos de la empresa para que desarrollen activamente su función.

Dentro del mantenimiento distinguimos dos tipos principales.

  • Mantenimiento correctivo (MC)
    • Es el manteminiento que se realiza con un equipo cuando ya se ha producido la avería, su fin es restituir el funcionamiento normal de la máquina.
    • Dentro del mantenimiento correctivo tenemos el correctivo paliativo (reparación provisional para salir del paso  y el curativo en el que la preparación es definitivo
  • Mantenimiento preventivo (MP)
    • Es el que trata de evitar averías o ´perdidas de rendimiento del equipo, puede ser sistemático, en el que actúa en intervalos de tiempos prefijados, o por condición que es aquel basado en el conocimiento contínuo o periódico de un componente por medición que nos conduce a la predicción de la avería, más conocido por mantenimiento predictivo.
  • Mantenimiento de mejoras (RE)
    • Se ocupa de estudiar posibles reformas de equipos con la intención de eliminar los puntos negros de la instalación que son los puntos que pueden llegar a producir pérdidas productivas muy continuadas.

NIVELES DE MANTENIMIENTO
  • Nivel 1: Operaciones fáciles en las que no es necesario el desmontaje de la máquina, normalmente definidas por el fabricante, son operaciones relacionadas con el mantenimiento preventivo generalmente realizadas por los propios operarios.
  • Nivel 2: Sustitución de componentes estándar de los equipos, no requieren grandes operaciones de desmontaje, puede estar relacionado con el mantenimiento preventivo o correctivo.
  • Nivel 3: Relacionado con operaciones de mantenimiento correctivo, se realizan operaciones de desmontaje de la máquina y con asiduidad restitución de piezas del equipo.
  • Nivel 4: Corresponde a grandes operaciones de carácter preventivo o correctivo. Suelen ser ejecutadas por personal interno de mantenimiento.
  • Nivel 5: Estas operaciones suele realizarlas personal muy especializado con amplia experiencia en este tipo de servicio.